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2
Debunking Bad Statistics

The aim of this chapter is to introduce, by way of examples and stories, 
some of the basic tools needed for the type of risk assessment problems 
introduced in Chapter 1. We do this by introducing and analysing the 
traditional statistics and data analysis methods that have previously been 
used. In doing so you should be able to understand both their strengths 
and limitations for risk assessment. In particular, in discussing their 
limitations, we also provide a gentle introduction to the power of causal 
models (which are often implemented as Bayesian networks).

2.1 � Predicting Economic Growth: The Normal 
Distribution and Its Limitations

Table  2.1 contains the (annualized) growth rate figures for the UK 
for each quarter from the start of 1993 to the end of 2007 (which was 
just prior to the start of the international economic collapse). So, for 
example, in the fourth quarter of 2007 the annual growth rate in the UK 
was 2.36%.

Data such as this, especially given the length of time over which it has 
been collected, is considered extremely valuable for financial analysis 
and projections. Since so many aspects of the economy depend on the 
growth rate, we need our predictions of it for the coming months and 
years to be very accurate. So imagine that you were a financial analyst 
presented with this data in 2008. Although it would be nice to be able to 
predict the growth rate in each of the next few years, the data alone gives 
you little indication of how to do that. If you plot the growth over time as 
in Figure 2.1 there is no obvious trend to spot.

But there is a lot that you can do other than making ‘point’ predic-
tions. What financial institutions would really like to know is the answer 
to questions like those in Sidebar 2.1.

Indeed, economic analysts feel that the kind of data provided enables 
them to answer such questions very confidently. The way they typically 
proceed is to ‘fit’ the data to a standard curve (also called a statisti-
cal distribution). The answers to all the aforementioned questions can 
then be answered using standard statistical tables associated with that 
distribution.

Sidebar 2.1

The kind of things financial insti-
tutions would really like to know:

◾◾ What are the chances that 
the next year’s growth rate 
will be between 1.5% and 
3.5% (stable economy)?

◾◾ What are the chances that 
the growth will be less than 
1.5% in each of the next 
three quarters?

◾◾ What are the chances that 
within a year there will be 
negative growth (recession)?
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10 Risk Assessment and Decision Analysis with Bayesian Networks

In most cases the analysts assume that data of the kind seen here can 
be fitted by what is called a Normal distribution (also called a bell curve 
because that is its shape as shown in Figure 2.2).

The key thing about a Normal distribution is that it is an ‘ideal-
ized’ view of a set of data. Imagine that, instead of trying to model 
annual growth rate, you were trying to model the height in centime-
ters of adults. Then, if you took a sample of, say, 1,000  adults and 
plotted the frequency of their heights within each 10-centimeter inter-
val you would get a graph that looks something like Figure 2.3. As 
you increase the sample size and decrease the interval size you would 
eventually expect to get something that looks like the Normal distri-
bution in Figure 2.4.

The Normal distribution has some very nice mathematical properties 
(see Box 2.1), which makes it very easy for statisticians to draw inferences 
about the population that it is supposed to be modelling.

Unfortunately, it turns out that, for all its nice properties the Normal 
distribution is often a very poor model to use for most types of risk 
assessment. And we will demonstrate this by returning to our GDP 
growth rate data. In the period from 1993 to 2008 the average growth 
rate was 2.96% with a standard deviation of 0.75.
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Figure 2.1  Growth rate in GDP (%) over time from first quarter 1993 to first 
quarter 2008.

Table 2.1
Quarterly Annualized UK 
Growth Rate Figures 1993-
2007 Adjusted for Inflation

Quarter
Annual 
GDP% Quarter

Annual 
GDP%

1993 Q1 1.42 2000 Q4 3.04
1993 Q2 2.13 2001 Q1 3.08
1993 Q3 2.50 2001 Q2 2.31
1993 Q4 2.82 2001 Q3 2.27
1994 Q1 3.29 2001 Q4 2.19
1994 Q2 4.28 2002 Q1 1.79
1994 Q3 4.83 2002 Q2 1.95
1994 Q4 4.70 2002 Q3 2.19
1995 Q1 3.95 2002 Q4 2.44
1995 Q2 3.01 2003 Q1 2.29
1995 Q3 2.76 2003 Q2 2.83
1995 Q4 2.51 2003 Q3 2.88
1996 Q1 3.14 2003 Q4 3.23
1996 Q2 3.03 2004 Q1 3.58
1996 Q3 2.54 2004 Q2 3.22
1996 Q4 2.84 2004 Q3 2.57
1997 Q1 2.70 2004 Q4 2.45
1997 Q2 3.13 2005 Q1 1.81
1997 Q3 3.48 2005 Q2 1.97
1997 Q4 3.90 2005 Q3 2.50
1998 Q1 3.85 2005 Q4 2.40
1998 Q2 3.67 2006 Q1 3.16
1998 Q3 3.52 2006 Q2 2.71
1998 Q4 3.39 2006 Q3 2.59
1999 Q1 3.13 2006 Q4 2.70
1999 Q2 3.29 2007 Q1 2.59
1999 Q3 3.72 2007 Q2 2.88
1999 Q4 3.74 2007 Q3 2.91
2000 Q1 4.37 2007 Q4 2.36
2000 Q2 4.55 2008 Q1 1.88
2000 Q3 3.73

Source:	 UK Office of National 
Statistics.

Figure 2.2  Normal distribution 
(bell curve).
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Figure 2.3  Histogram of people’s 
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Figure 2.4  Normal distribution 
model for people’s height.
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11Debunking Bad Statistics

Box 2.1 � Properties of the Normal Distribution

◾◾ The distribution is symmetric around the midpoint, which is called the mean of the distribution. 
Because of this exactly half of the distribution is greater than the mean and half less than the mean. If 
the model is a good fit of the real data then the mean of the distribution should be close to the mean of 
the data from which it is drawn (that is, just the average calculated by adding all the data and dividing 
by the number of points). So, from Figure 2.4, we can infer that there is a 50% chance that a randomly 
selected adult in the UK will be taller than 165 cm.

◾◾ The ‘spread’ of the data (which is the extent to which it varies from the mean) is captured by a single 
number called the standard deviation. Examples of Normal distributions with different standard devi-
ations are shown in Figure 2.5. Once we know the mean and the standard deviation there are tables 
and calculators that tell us what proportion of the distribution lies between any two points.

	 So, for example, the distribution that supposedly models height in Figure 2.4 has a mean of 165 and 
a standard deviation of 14. Approximately 20% of such a distribution lies between 178 and 190, so 
if this distribution really is an accurate model of height we can conclude that there is a 20% chance 
a randomly selected adult will be between 178 and 190 cm tall.

◾◾ As shown in Figure 2.6 it is always the case that 95% of the distribution lies between the mean and plus or 
minus 1.96 times the standard deviation. So (by symmetry) in the height example, 2.5% of the distribution 
lies above 195 cm. This means there is a 2.5% chance a randomly selected person is taller than 195cm.

◾◾ The Normal distribution approaches zero frequency in both directions, towards plus and negative infinity, 
but never reaches it. So, no matter how far we go away from the mean the curve never quite touches zero on 
the frequency axis (mathematicians say it is asymptotic). However, as we move away from the mean we very 
quickly get into tiny regions of the curve. For example, less than 0.001% of the distribution lies beyond the 
mean plus four standard deviations. So, in our height example less than 0.001% of the distribution lies to the 
right of 224 cm. This means that there is less than 1 in a 100,000 chance of an adult being more than 224 cm 
tall according to the model. Although the infinite tails of the Normal distribution are very useful in the sense 
that the model poses no limit on the possible values that can appear, it also leads to ‘impossible’ conclu-
sions. For example, the model implies there is a nonzero (albeit very small) chance that an adult can be less 
than zero centimeters tall, and a nonzero chance that an adult can be taller than the Empire State Building.

0 2-2 31-1-3

Mean 0
standard deviation 0.5

Mean 2
standard deviation 1Mean 0

standard deviation 1

Figure 2.5  Examples of different Normal distributions.

mean – (1.96 × σ) mean + (1.96 × σ)mean

�e unshaded area makes up
95% of the area under the curve.
So there is a 95% chance of observing
a value within the range

mean ± (1.96 × σ)
where σ is the standard deviation

Figure 2.6  Normal distribution: 95% lies between the mean ±1.96 standard deviations.
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12 Risk Assessment and Decision Analysis with Bayesian Networks

Following the approach as described earlier for the height example, 
we can create an appropriate histogram of the growth rate data and fit a 
Normal distribution to it as shown in Figure 2.7.

The fitted Normal curve has a mean of 2.96 and a standard deviation 
of 0.75. Using standard tables (plus a little of the kind of probability 
that you will learn about in Chapters 4 and 5) this enables us to answer 
the original questions that we posed in Sidebar 2.2.

Things turned out very differently from these optimistic predic-
tions, as the actual data (between 1993 and 2009) shown in Figure 2.8 
and Table 2.2 clearly demonstrate.

Within less than a year the growth rate was below –5%. According to the 
model a growth rate below –5% would happen considerably less frequently 
than once every 14 billion years (i.e., the estimated age of the universe).

Actual predictions made by financial institutions and regulators in 
the period running up to the credit crunch were especially optimistic 
because they based estimates of growth on the so-called Golden Period 
of 1998–2007.

So what went wrong? Clearly the Normal distribution was a hopelessly 
inadequate model. It looked like a reasonable fit for the data in the period 
1993–2008 (when there was not a single period of negative growth; 

Sidebar 2.2

Answers to original questions if 
we assume Normal distribution:

◾◾ What are the chances that 
the next quarter growth rate 
will be between 1.5% and 
3.5%? Answer based on the 
model: approximately 72%.

◾◾ What are the chances that 
the growth will be less than 
1.5% in each of the next three 
quarters? Answer: about 
0.0125%, which is 1 in 8,000.

◾◾ What are the chances that 
within a year there will be 
negative growth (recession)? 
Answer: about 0.0003%, 
which is less than 1 in 30,000.
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Figure 2.7  Histogram of annualized GDP growth rate from 1993 to 2008.
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Figure 2.8  Growth rate in GDP (%) over time from 1993 to 2009.

Table 2.2
Quarterly Annualized 
UK Growth Rate Figures 
from 2008 Q2-2010 
Adjusted for Inflation

Quarter Annual GDP%

2008 Q2 1.04
2008 Q3 –0.40
2008 Q4 –2.75
2009 Q1 –5.49
2009 Q2 –5.89
2009 Q3 –5.28
2009 Q4 –2.87

Source:	 UK Office of National 
Statistics.
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13Debunking Bad Statistics

indeed growth was never below 1.8%). But although the tails are infinite 
they are narrow in the sense we explained in Box 2.1: observations a long 
way from the mean are almost impossible. Hence, a Normal distribution 
is inherently incapable of predicting many types of rare events.

Whereas analysts like to focus on the most recent data as being the 
most relevant, especially during periods of prolonged stability such 
as had been experienced, a look at the longer term data reveals much 
greater potential for volatility. This can be seen in Figure 2.9, which 
charts the growth rate for the period 1956–2017.

When we plot these quarterly growth rates as a histogram (Figure 2.10) 
it looks very different from the histogram we saw in Figure 2.7 of the 
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Figure 2.9  Growth rate in GDP (%) over time from 1956 to 2017.
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14 Risk Assessment and Decision Analysis with Bayesian Networks

period 1993–2008. Not only is the spread of the distribution much wider, 
but it is clearly not ‘Normal’ because it is not symmetric.

Unfortunately, while basing predictions on the longer term data may 
have led to slightly more realistic results (in the sense of being less 
optimistic) even this data (and any amount of previous data that we may 
have collected) would still have been insufficient to predict the scale of 
the collapse in growth. The conditions prevailing in 2008 were unlike 
any that had previously been seen. The standard statistical approaches 
inevitably fail in such cases.

2.2 � Patterns and Randomness: From School 
League Tables to Siegfried and Roy

Take a look at Table 2.3. It shows the scores achieved (on an objective 
quality criteria) by the set of state schools in one council district in the 
UK. We have made the schools anonymous by using numbers rather 
than names. School 38 achieved a significantly higher score than the 
next best school, and its score (175) is over 52% higher than the low-
est ranked school, number 41 (score 115). Tables like these are very 
important in the UK, since they are supposed to help provide informed 
‘choice’ for parents. Based on the impressive results of School 38 par-
ents clamour to ensure that their child gets a place at this school. Not 
surprisingly, it is massively oversubscribed. Since these are the only 
available state schools in this district, imagine how you would feel if, 
instead of your child being awarded a place in School 38, he or she 
was being sent to school 41. You would be pretty upset, wouldn’t you?

You should not be. We lied. The numbers do not represent schools at 
all. They are simply the numbers used in the UK National Lottery (1 to 
49). And each ‘score’ is the actual number of times that particular num-
bered ball had been drawn in the first 1,172 draws of the UK National 
Lottery. So the real question is: Do you believe that 38 is a ‘better’ num-
ber than 41? Or, making the analogy with the school league table more 
accurate:

Do you believe the number 38 is more likely to be drawn next time than 
the number 41? (Since the usual interpretation of the school league table 
is that if your child attends the school at the top he or she will get better 
grades than if he or she attends the school at the bottom.)

The fact is that the scores are genuinely random. Although the 
‘expected’ number of times any one ball should have been drawn is 
about 144 you can see that there is a wide variation above and below this 
number (even though that is still the average score).

What many people fail to realise is that this kind of variation is inevi-
table. It turns out that in any sequence of 1,172 lottery draws there is about 
a 50% chance that at least half the numbers will be chosen either less than 
136 times or more than 152 times. That indeed is roughly what happened 
in the real sample. Moreover, the probability that at least one number will 
be chosen more than 171 times is about 45%. You may find it easier to 
think of rolling a die 60 times. You would almost certainly not get each of 

Table 2.3
School League Table

School Number Score

38 175
43 164
44 163
25 158
31 158
47 158
11 155
23 155
48 155
40 153
7 151

30 151
6 150
9 149

33 149
19 148
10 147
12 147
32 147
2 146

27 146
42 146
28 145
35 145
49 145
45 144
46 143
1 142

18 142
22 141
26 141
4 140

14 140
29 140
39 139
8 138
5 136

17 136
34 136
3 134

24 133
36 131
37 131
15 130
21 130
16 128
13 120
20 116
41 115
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15Debunking Bad Statistics

the six numbers coming up 10 times. You might get 16 threes and only 6 
fours. That does that not make the number three ‘better’ than the number 
four. The more times you roll the die, the closer in relative terms will be 
the frequencies of each number (specifically, if you roll the die n times the 
frequency of each number will get closer to n divided by 6 as n gets bigger); 
but in absolute terms the frequencies will not be exactly the same. There 
will inevitably be some numbers with a higher count than others. And one 
number will be at the ‘top’ of the table while another will be ‘bottom’.

We are not suggesting that all school league tables are purely random 
like this. But, imagine that you had a set of genuinely equal schools 
and you ranked them according to a suitable criteria like average exam 
scores. Then, in any given year, you would inevitably see variation like 
the earlier table. And you would be wrong to assume that the school at 
the top was better than the school at the bottom. In reality, there may be 
inherent quality factors that help determine where a school will come in 
a league table. But this does not disguise the fact that much of the varia-
tion in the results will be down to nothing more than pure and inevitable 
chance. See Box 2.2 for another example.

Box 2.2 � Sporting Form: Quality or Luck?
The English premier league consists of 20 teams. The 20 competing in 2016–17 are shown in Table 2.4. This table 
also shows the results after each team has played every other team once where we have used 2 to represent victory 
for the first named team, 1 to represent draw, and 0 to represent defeat for the first named team.

Table 2.4
Premiership Results

Ars Bou Bur Che CP Ev Hull Lei Liv MC MU Mid Sou Sto Sun Swa Tot Wat WB WH

Arsenal 1 2 1 0 1 0 1 1 1 0 0 0 1 0 1 2 1 0 0
Bournemouth 0 2 1 0 0 2 2 1 0 2 1 1 1 0 1 2 0 2
Burnley 2 0 1 0 1 0 0 1 2 2 1 0 1 1 2 2 0
Chelsea 1 0 0 2 2 1 2 2 2 2 0 2 0 2 1 0
Crystal Palace 0 1 1 0 2 1 0 0 2 0 2 2 0 1 2
Everton 1 1 2 2 2 2 2 0 1 2 2 2 0 1
Hull City 2 0 2 2 0 2 1 1 1 2 1 0 2
Leicester 2 1 0 1 0 1 0 0 2 2 0 1
Liverpool 2 2 2 1 0 1 2 0 1 2 2
Man City 2 0 2 0 1 0 2 2 2 0
Man United 0 2 1 1 0 0 1 1 1
Middlesbrough 2 2 1 2 1 2 2 2
Southampton 0 1 0 0 0 0 1
Stoke City 1 1 2 0 0 0
Sunderland 1 0 1 0 2
Swansea City 1 2 0 0
Tottenham 1 0 0
Watford 1 2
West Brom 2
West Ham
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16 Risk Assessment and Decision Analysis with Bayesian Networks

Unfortunately, many critical decisions are made based on wrongly 
interpreting purely random results exactly like these, even though the 
randomness was entirely predictable (indeed, we will show in Chapters 
4 and 5 that probability theory and statistics are perfectly adequate for 
making such predictions).

In fact, most serious real-world ‘risks’ are not like lotteries, and a 
very good illustration of this is to contrast the predictable risks confront-
ing casinos (whose job is to run different types of lotteries) with less 
predictable and far more serious ones.

The risk for a casino of making massive losses to gamblers is entirely 
predictable because of our understanding of the ‘mechanical’ uncertainty of 

So, for example, the 2 in the cell with row Arsenal and column Bur (Burnley) means that Arsenal defeated 
Burnley.

This data is not real. We generated random results in each result cell using the Excel function 
RANDBETWEEN(0,2). Based on these randomly generated results we determine the league table as shown in 
Table 2.5a using the premier league convention of 3 points for a win, 1 for a draw, and 0 for defeat.

It seems difficult to understand when you look at this table that there really is no difference in ‘form’ 
between Everton (leaders with 40 points) and Leicester (bottom with 15 points). However, the career of 
many team managers will depend on perceptions of their performance. How then can we discriminate 
between those managers that are merely lucky and those that are genuinely competent?

What is striking about this table is how, in its distribution of points, it looks little different from the 
actual premier league table as it stood in week 19 of the season (January 2017) when all teams had played 
each other once (Table 2.5b).

Table 2.5
Premiership Table (a)

Everton 40
Middlesbrough 39
West Brom 37
Hull City 36
Liverpool 31
Crystal Palace 30
Chelsea 29
Burnley 28
Sunderland 29
Swansea 27
Bournemouth 26
West Ham 25
Man City 24
Stoke City 24
Tottenham 23
Watford 22
Man United 20
Southampton 16
Arsenal 15
Leicester City 15

a	 Based on random results

Table 2.5
Premiership Table (b)

Chelsea 49
Liverpool 43
Arsenal 40
Tottenham 39
Man City 39
Man United 36
Everton 27
West Brom 26
Bournemouth 24
Southampton 24
Burnley 23
West Ham 22
Watford 22
Stoke City 21
Leicester City 20
Middlesbrough 18
Crystal Palace 16
Sunderland 14
Hull City 13
Swansea 12

b	 Real table after 19 games Jan 2017
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17Debunking Bad Statistics

the games played. For example, the ‘true’ probability that a roulette wheel 
throw ends with the ball on a specific number (from 1 to 36) is not 1 in 36 as 
suggested by the winning ‘odds’ provided by the casino but 1 in 38 because 
(in the USA) there are also two zero slots in addition to the 1-36 numbers (in 
UK casinos there is only one zero slot so the true probability of winning is 
1 in 37). Hence their risk of ruin from losing money at the roulette wheel is 
easily controlled and avoided. Simply by placing a limit on the highest bet 
means that in the long run the casinos cannot lose really large sums because 
of the odds in their favor. And to minimize the risk of losses to cheating (i.e., 
where gamblers use techniques that swing the odds in their own favor) the 
casinos spend significant sums on security even though, again, such risks 
are also foreseeable.

Yet, the casinos can be blind to the kind of risks that could really 
bring them down, and there was no better example of this than what 
happened at the Mirage Resort and Casino on 3  October 2003. For 
many years the illusionists Siegfried and Roy had been the biggest 
draw in Las Vegas with their nightly show (Figure 2.11). A key part 
of the show was Roy’s interaction with tigers. Roy had lived and even 
slept with tigers for some 40 years without any incident. Yet, after 
over 5,000 performances, on that fateful night Roy was mauled by one 
of his beloved tigers, causing life-threatening injuries. The show was 
immediately and permanently closed leading to the dismissal of 267 
staff and performers and other losses (from ticket sales, hotel book-
ings, and legal costs) of hundreds of millions of dollars, making it the 
single worst loss in Las Vegas history. The casino managers—who you 
would think are the ultimate experts in risk assessment—were ‘beaten’ 
by a risk they had not even considered. The magnitude of the resulting 
losses from that risk dwarfed the largest possible loss they could ever 
have suffered from the very predictable risks they had spent millions 
protecting themselves against.

This example was cited in an excellent book by Nassim Taleb whose 
title, The Black Swan, is the expression used to describe highly unpre-
dictable events (for centuries all swans were assumed to be white because 
nobody had yet seen a black swan; the sighting of a black swan reversed 
all previous beliefs about the colour of swans). For the Mirage what hap-
pened on 3 October 2003 was a devastating black swan event.

Traditional statistical methods, which, we will see, rely on ideas like ideal 
lotteries, repeated observations and past data, cannot predict black swan 
events. Some, including Taleb himself, argue that no methods can predict 
such ‘unknowns’ and ‘unknowables’. We believe the methods advocated in 
this book allow for management and assessment of risks that include black 
swan events. We will see this in Chapter 13 on operational risk.

2.3 � Dubious Relationships: Why You 
Should Be Very Wary of Correlations 
and Their Significance Values

The close ‘correlation’ between per capita cheese consumption and 
number of people who died by becoming tangled in their bedsheets in 

Figure 2.11  Siegfried and Roy (pre-
2003), illustrated by Amy Neil, aged 12.
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18 Risk Assessment and Decision Analysis with Bayesian Networks

the United States, as shown in Figure 2.12, is one of many spurious cor-
relations published on the website http://tylervigen.com.

Correlations and significance values (also called p-values) are the 
standard techniques that statisticians use to determine whether there 
are genuine relationships between different variables. In the approach 
to probability that we espouse in this book these traditional techniques 
(along with their first-cousins regression analysis and confidence inter-
vals, which we will look at in Chapter 12) are superseded by techniques 
that we feel are simpler and more intuitive. But the acceptance and 
entrenchment of these ideas are so widespread across all empirical dis-
ciplines that you need to be aware of what they are in order to appreciate 
the damage they can do to rational decision making and risk analysis.

Look at Table  2.6. This gives (a) the average temperature and (b) 
the number of automobile crashes resulting in fatalities in the United 
States in 2008 broken down by month (source: U.S. Department of 
Transport 2008). We can plot this data in a scatterplot graph as shown 
in Figure 2.13.

From a quick view of the chart there is a relationship between tem-
perature and fatalities. There seem to be more fatalities as the tem-
perature increases. Statisticians use a formula—called the correlation 
coefficient (see Box 2.3)—that measures the extent to which the two 
sets of numbers are related. You do not need to know what this for-
mula is because any spreadsheet package like Excel will do the cal-
culation for you. It so happens that the correlation coefficient in this 
case is approximately 0.869. Using standard tables this turns out to be 
‘highly significant’ (comfortably passing the criteria for a p-value of 
0.01 that is also explained in Box 2.3). Statisticians would normally 
conclude from this data that the number of road fatalities and the min-
imum temperature on any given day are significantly related (although 
note that we have severe concerns about the limitations of p-values as 
explained in Box 2.3).
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Figure 2.12  Example of spurious correlations published on website http://tylervigen.com. (Data sources: U.S. Department 
of agriculture and centers for disease control and prevention)

Table 2.6
Temperature and Fatal 
Automobile Crashes

Month
Average 

Temperature

Total 
Fatal 

Crashes

January 17.0 297
February 18.0 280
March 29.0 267
April 43.0 350
May 55.0 328
June 65.0 386
July 70.0 419
August 68.0 410
September 59.0 331
October 48.0 356
November 37.0 326
December 22.0 311
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Box 2.3 � Correlation Coefficient and p-Values: What They Are 
and Why You Need to Be Very Wary of Them

The correlation coefficient is a number between –1 and 1 that determines whether two paired sets of data (such as 
those for height and intelligence of a group of people) are related. The closer to 1 the more ‘confident’ we are of a 
positive linear correlation and the closer to –1 the more confident we are of a negative linear correlation (which hap-
pens when, for example, one set of numbers tends to decrease when the other set increases as you might expect if 
you plotted a person’s age against the number of toys they possess). When the correlation coefficient is close to zero 
there is little evidence of any relationship.

Confidence in a relationship is formally determined not just by the correlation coefficient but also by the 
number of pairs in your data. If there are very few pairs then the coefficient needs to be very close to 1 or –1 
for it to be deemed ‘statistically significant’, but if there are many pairs then a coefficient closer to 0 can still be 
considered ‘highly significant’.

The standard method that statisticians use to measure the ‘significance’ of their empirical analyses is the 
p-value. Suppose we are trying to determine if the relationship between height and intelligence of people is sig-
nificant and have data consisting of various pairs of values (height, intelligence) for a set of people; then we start 
with the ‘null hypothesis’, which, in this case is the statement ‘height and intelligence of people are unrelated’. 
The p-value is a number between 0 and 1 representing the probability that the data we have arisen if the null 
hypothesis were true. In medical trials the null hypothesis is typically of the form that ‘the use of drug X to treat 
disease Y is no better than not using the drug’.

The calculation of the p-value is based on a number of assumptions that are beyond the scope of this dis-
cussion, but people who need p-values can simply look them up in standard statistical tables (they are also 
computed automatically in Excel when you run Excel’s regression tool). The tables (or Excel) will tell you, for 
example, that if there are 100 pairs of data whose correlation coefficient is 0.254, then the p-value is 0.01. This 
means that there is a 1 in 100 chance that we would have seen these observations if the variables were unrelated.

A low p-value (such as 0.01) is taken as evidence that the null hypothesis can be ‘rejected’. Statisticians say that a 
p-value of 0.01 is ‘highly significant’ or say that ‘the data is significant at the 0.01 level’.

A competent researcher investigating a hypothesized relationship will set a p-value in advance of the empiri-
cal study. Typically, values of either 0.01 or 0.05 are used. If the data from the study results in a p-value of less 
than that specified in advance, the researchers will claim that their study is significant and it enables them to 
reject the null hypothesis and conclude that a relationship really exists.
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Figure 2.13  Scatterplot of temperature against road fatalities (each dot repre-
sents a month).
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In their book The Cult of Statistical Significance Ziliak and McCloskey expose a number of serious prob-
lems in the way p-values have been used across many disciplines. Their main arguments can be summarized as:

◾◾ Statistical significance (i.e., the p-value) is arbitrarily set and generally has no bearing on what we are 
really interested in, namely impact or magnitude of the effect of one or more variables on another.

◾◾ By focusing on a null hypothesis all that we are ever considering are existential questions, the answers 
to which are normally not interesting. So, for example, we might produce a very low p-value and con-
clude that road deaths and temperature are not unrelated. But the p-value tells us nothing about what 
we are really interested in, namely the nature and size of the relationship.

◾◾ Researchers sometimes wrongly assume that the p-value (which, remember, is the chance of observ-
ing the data if the null hypothesis is true) is equivalent to the chance that the null hypothesis is true 
given the data. So, for example, if they see a low p-value of say 0.01 they might conclude that there is 
a 1 in a 100 chance of no relationship (which is the same as a 99% chance that there is a relationship). 
This is, in fact, demonstrably false (we will show this in Chapter 6) – the p-value tells us about the 
probability of observing the data if the null hypothesis is true, and this may be very different from 
the probability of the hypothesis given the data; it is an example of one of the most pernicious and 
fundamental fallacies of probability theory that permeates many walks of life (called the fallacy of 
the transposed conditional). For example, in 2013 the 5th report of the Intergovernmental Panel on 
Climate (IPCC) Summary for Politicians asserted that ‘there is a 95% certainty that at least half the 
warming in the last 60 years is man-made’. In fact, what the IPCC report actually showed was that 
the null hypothesis ‘Less than half the warming in the last 60 years is man-made’ could be rejected at 
the 5% level (p-value 0.05), i.e. that there was less than a 5% probability of observing the actual data 
under the null hypothesis. That is very different from the assertion in the summary report.

◾◾ In those many studies (notably medical trials) where the null hypothesis is one of ‘no change’ for 
some treatment or drug, the hypothesis comes down to determining whether the arithmetic mean 
of a set of data (from those individuals taking the treatment/drug) is equal to zero (supposedly 
representing status quo). In such cases, we have the paradox that, as we substantially increase the 
sample size, we will inevitably find that the mean of the sample, although approximately close to 
and converging to zero, will be significantly different from zero, even when the treatment genu-
inely has no effect. This is covered in Chapter 12 and is known as Meehl’s conjecture.

◾◾ The choice of what constitutes a valid p-value is arbitrary. Is 0.04 radically different from 0.05? A 
treatment or putative improvement that yields a p-value that just misses the 0.05 target may be com-
pletely rejected and one that meets the target may be adopted.

Ziliak and McCloskey cite hundreds of examples of studies (all published in highly respected scientific jour-
nals) that contain flawed analyses or conclusions arising from the aforementioned misunderstandings. They give 
the following powerful hypothetical example of a fundamental weakness of using p-values:

Suppose we are interested in new drugs for reducing weight in humans. Two candidate drugs (called 
Precision and Oomph respectively) are considered. Neither has shown any side effects and their cost is 
the same. For each drug we conduct a study to test the null hypothesis ‘taking the drug leads to no weight 
loss’. The results are:

◾◾ For drug Precision the mean weight loss is 5 lb and every one of the 100 subjects in the study 
loses between 4.5 lb and 5.5 lb.

◾◾ For drug Oomph the mean weight loss is 20 lb and every one of the 100 subjects in the study 
loses between 10 lb and 30 lb.

Since the objective of weight loss drugs is to lose as much weight as possible, any rational, intuitive 
review of these results would lead us to recommend drug Oomph over Precision. Yet the p-value test pro-
vides the opposite recommendation. For drug Precision the p-value is much lower (i.e. more significant) 
than the p-value for drug Oomph. This is because p-values inevitably ‘reward’ low variance more than 
magnitude of impact.
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The inevitable temptation arising from such results is to infer causal 
links such as, in this case, higher temperatures cause more fatalities. 
Indeed, using the data alone and applying traditional statistical regres-
sion techniques to that data you will end up with a simple model like that 
shown in Figure 2.14. Here the equation N = 2.144 × T + 243.55 is the 
best linear fit for the data calculated using Excel’s regression analysis 
tool. Using this equation we can predict, for example (by simply substi-
tuting the temperature values), that at 15°F we might expect to see 275 
fatal crashes, per month while at 80°F we might expect to see 415 fatal 
crashes per month.

Such an analysis could lead to an apparently counterintuitive (and 
dangerous?) newspaper headline:

New research proves that driving in winter is actually safer 
than at any other time of the year.

What is happening in this example is that there are other underlying 
factors (such as number of journeys made and average speed) that con-
tribute to an explanation of the number of road fatalities on any given day 
(we will return to this example in Chapter 3 to motivate the need for more 
intelligent causal models for risk analysis).

There are many well-known examples of similar dubious correla-
tions that expose the dangers and weaknesses of this standard statisti-
cal method. Some are shown in Sidebar 2.3. The folklore belief that 
babies are delivered by storks is strongly supported by analysis of real 
statistical data. In 2001 Matthews showed that the stork population and 
number of births in European cities were correlated to a very high level 
of significance (p-value 0.008). But, of course, the correlation misses 
the explanation of a third common factor: population size. Obviously 
cities with larger populations have more births, but they also attract 
more storks.

Similarly, studies have shown that height and intelligence (as mea-
sured by an IQ test) of people are highly correlated. But, as illustrated 
in Figure 2.15, any attempt to explain intelligence causally by height 
misses the fact that the relationship is almost entirely due to a third 
factor, age; many people in the study were children between the ages 
of 4 to 16.

Bayesian Networks

You can consider the diagrams in Figure  2.14 and 
Figure  2.15 as our first examples of Bayesian networks. 
Each node (i.e. bubble) represents some variable of inter-
est and an arc between two nodes represents some kind of 
influential (or even causal) relationship between the corre-
sponding variables.

Sidebar 2.3 

Examples of purely coincidental 
(but strong) correlations:

◾◾ Level of beer drinking in the 
United States and child mor-
tality in Japan.

◾◾ Solar radiation and the 
London Stock Exchange 
index.

◾◾ Sunspots and the lynx popu-
lation density.

◾◾ Per capita consumption of 
mozzarella cheese and the 
number of civil engineering 
doctorates awarded.

◾◾ The website tylervigen.
com provides many similar 
examples

Age

Height

Height

Intelligence

Intelligence

Correct influential relationship
through underlying common cause

Inappropriate causal link

Figure 2.15  Spurious relation-
ship resulting from failure to consider 
underlying common factor.

Temperature (T)

Total fatal crashes
(N)

N = 2.144 × T + 243.55

Figure 2.14  Simple regression 
model for monthly automobile fatal 
crashes.
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2.4 � Spurious Correlations: How 
You Can Always Find a Silly 
‘Cause’ of Exam Success

Although the preceding examples illustrate the danger of reading too 
much into dubious correlations between variables, the relationships we 
saw there did not arise purely by chance. In each case some additional 
common factors helped explain the relationship.

But many studies, including unfortunately many taken seriously, result 
in claims of causal relationships that are almost certainly due to nothing 
other than pure chance.

Although nobody would seriously take measures to stop Americans 
drinking beer in order to reduce Japanese child mortality, barely a day 
goes by when some decision maker or another somewhere in the world 
takes just as irrational a decision based on correlations that turn out to 
be just as spurious.

For example, on the day we first happened to be drafting this section 
(16 March 2009) the media was buzzing with the story that working 
night shifts resulted in an increased risk of breast cancer. This followed 
a World Health Organization study and it triggered the Danish govern-
ment to make compensation awards to breast cancer sufferers who had 
worked night shifts. It is impossible to state categorically whether this 
result really is an example of a purely spurious correlation. But it is actu-
ally very simple to demonstrate why and how you will inevitably find a 
completely spurious correlation in such a study—which you might then 
wrongly claim is a causal relationship—if you measure enough things.

Example 2.1  The Shotgun Fallacy

Let us suppose that we are interested in possible ‘causes’ of student exam 
success. To make our example as simple as possible let us assume that 
exam scores are measured on a scale of 1 (worst) to 10 (best).

Now let us think of a number of possible ‘causes’ of exam success. These 
could include plausible factors like coursework score and class attendance. 
But we could also throw in some implausible factors like the number of sex-
ual partners, number of football matches attended, or number of potatoes 
eaten on 12 January. In fact, to effectively demonstrate the point let us only 
consider a set of totally implausible factors. For simplicity we will assume 
that, like the exam score, they can all be measured on a scale of 1 to 10.

Now although these factors—suppose we think of 18—are com-
pletely silly, let’s actually remove any possibility that they are in any 
way valid factors by generating the results for them purely randomly. 
You can do this yourself. Create an Excel spreadsheet and type the entry 
=RANDBETWEEN(1,10) into cell A1. This will generate a random num-
ber between 1 and 10. By copying and pasting this entry create a set of 
random numbers like the set shown in Figure 2.16. There are 18 columns 
(A through to R) that we can think of as being the 18 silly factors associ-
ated with the students. We have also added column S, which represents 
the student exam score, again generated randomly in the same way.

Now, using Excel’s built-in data analysis package, run a correla-
tion analysis for each column (A through R) against the exam score 
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(column  S). If the correlation coefficient is higher than 0.561 then the 
correlation is considered to be highly significant (the p-value is 0.01).

In fact, because of the number of factors we are trying here it is very 
likely that you will find at least one column for which there is a significant 
correlation with S. In Figure 2.16 the correlation coefficient of H and S 
is 0.59. Since column H is just as likely to represent number of potatoes 
eaten on 12 January as any other factor, would we be correct in conclud-
ing that eating potatoes on 12 January is the key to exam success?

In fact, because of the number of factors, it is also almost certain that 
among the 18 factors themselves you will also find at least two pairs that 
have a significant correlation. For example, in this case columns B and Q 
have a correlation coefficient of 0.62, which apparently might lead us to 
conclude that you can increase the number of football matches you attend 
by taking on more sexual partners.

2.5 � The Danger of Regression: Looking 
Back When You Need to Look Forward

Suppose that you are blowing up a large balloon. After each puff you 
measure the surface area and record it as shown in Figure 2.17. So, after 
the 23rd puff the surface is 181 sq cm. What will the surface area be on 
the 24th puff? On the 50th puff?

As opposed to the data on growth rates in Section 2.1, there is no 
doubt that the data here exhibits a clear trend. When presented with 
this kind of problem professionals often try to find lines that best fit 
the historical trend. As we saw in Section 2.3 this is an example of 
regression analysis. As in the road fatalities example there, the sim-
plest (and most common) approach is to assume a simple straight line 
fit (called linear regression), producing a line such as line A shown in 
Figure 2.18. Alternatively, we might decide that the relative slow down 
of increase toward the end of the data is indicative of a curve such as 
line B (this is an example of nonlinear regression). The lines provide 

What is clear from Example 2.1 is 
that if you measure enough differ-
ent things about your subjects you 
will inevitably find at least one 
that is significantly correlated with 
the specific factor of interest. This 
may be the most likely explanation 
for night-shift work showing up 
as a significant ‘causal factor’ in 
breast cancer.

This should put you on your 
guard when you next hear about 
a recommendation for a lifestyle 
change that results from a statis-
tical study. It should also make 
you extremely wary of correlation 
coefficients and p-values.

Figure 2.16  Randomly generated numbers.
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us with a method of predicting future values. The line A fit results in 
a prediction of 186 for the 24th puff, whereas the line B fit results in a 
prediction of 183.

It is also common for analysts to apply what are called time-series 
adjustments into their prediction to take account of the fact that there 
are local sequential differences; in this case the even-numbered puffs 
tend to result in lower increases than the odd-numbered puffs (for the 
simple reason that we blow harder on alternative puffs). Factoring in 
the time-series analysis results in an adjusted prediction of 184 for 
puff 24 in the linear regression and 182 in the quadratic regression. 
Predictions further ahead, such as at puff 30, are farther apart (235 for 
line A and 185 for line B).

Unfortunately the balloon burst after 24 puffs (Figure 2.19). 
Neither model was able to predict this.
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Figure 2.17  Increasing surface area of balloon.
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Figure 2.18  Lines of best fit for the data.
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As we saw in Section 2.1 it was for reasons quite similar to this 
that the traditional statistical models were unable to predict the col-
lapse of the banking sector in 2008 that ushered in a major worldwide 
recession. Although the models can incorporate millions of histori-
cal data to produce highly complex—and accurate—predictions over 
the short term during periods of growth, they were predicated on a 
set of barely articulated overoptimistic assumptions. The most basic 
knowledge about balloons would have indicated that a complete burst 
was inevitable, but traditional statistical models cannot incorporate 
this knowledge. Failure to do so is an example of what is commonly 
called the fallacy of induction. A similar example is highlighted in the 
Sidebar 2.4.

Whereas methods that rely purely on past data cannot predict these 
kinds of events, the methods advocated in this book at least provide 
the possibility of predicting them by enabling us to incorporate expert 
judgement about assumptions, missing variables, the structure of 
causal relations, and our uncertainty about these.

Sidebar 2.4

Does the Data Tell 
the Full Story?
Suppose a government collects 
data on terrorist attacks on its ter-
ritory as shown in Figure  1.20. 
Traditional statistical modelling 
predicts that in year 17 the number 
of attacks will be 15% fewer than 
in year 16. This makes the threat 
sufficiently low that a range of 
expensive security measures can 
now be lifted.

But what if the decreasing 
number of attacks is the result not 
just of a reduced threat but also 
of the increasingly sophisticated 
counterterrorist measures? The 
causal impact of these measures 
is not incorporated in the statisti-
cal model and is therefore wrongly 
ignored.
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Figure 2.19  Balloon bursts on puff 24.
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Figure 2.20  Charting attacks over time.
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2.6 � The Danger of Averages

Fred and Jane study on the same course spread over two years. To com-
plete the course they have to complete 10 modules. At the end, their 
average annual results are as shown in Table 2.7. Jane’s scores are worse 
than Fred’s every year. So how is it possible that Jane got the prize for the 
student with the best grade? It is because the overall average figure is an 
average of the year averages rather than an average over all 10 modules. 
We cannot work out the average for the 10 modules unless we know how 
many modules each student takes in each year.

In fact:

◾◾ Fred took 7 modules in Year 1 and 3 modules in Year 2
◾◾ Jane took 2 modules in Year 1 and 8 modules in Year 2.

Assuming each module is marked out of 100, we can use this infor-
mation to compute the total scores as shown in Table 2.8. So clearly Jane 
did better overall than Fred.

This is an example of Simpson’s paradox. It seems like a paradox—
Fred’s average marks are consistently higher than Jane’s average marks 
but Jane’s overall average is higher. But it is not really a paradox. It is 
simply a mistake to assume that you can take an average of averages 
without (in this case) taking account of the number of modules that make 
up each average.

Look at it the following way and it all becomes clear: In the year 
when Fred did the bulk of his modules he averaged 50; in the year when 
Jane did the bulk of her modules she averaged 62. When you look at it 
that way it is not such a surprise that Jane did better overall.

This type of instance of Simpson’s paradox is particularly common in 
medical studies. Consider the example shown in Tables 2.9–2.11 (based 
on a simplified version of a study described in Bishop et al., 1975) in 
which the indications from the overall aggregated data from a number of 
clinics (Table 2.9) suggest a positive association between pre-natal care 
and infant survival rate. However, when the data are analysed for each 
individual clinic (Tables 2.10–2.11) the survival rate is actually lower 
when pre-natal care is provided in each case. Bishop et al. concluded:

“If we were to look at this [combined] table we would erroneously con-
clude that survival was related to the amount of care received”. 

Pearl 2000 notes that:

“Ironically survival was in fact related to the amount of care received …
What Bishop et al. meant to say is that looking uncritically at the com-
bined table, we would erroneously conclude that survival was causally 
related to the amount of care received”.

We will look at a more profound and troubling example of Simpson’s 
paradox later in the chapter. In fact, such examples provide a very con-
vincing motivation for why causal models (implemented by Bayesian 
networks) are crucial for rational decision making. But first we have to 
address more fundamental concerns about the use of averages.

Table 2.7
Course Results

Fred Jane

Year 1 average 50 40
Year 2 average 70 62
Overall average 60 51

Table 2.8
Revised Score Information

Fred Jane

Year 1 
total

350 
(7 × 50)

80 
(2 × 40)

Year 2 
total

210 
(3 × 70)

496 
(8 × 62)

Overall 
total

560 576

Real 
overall 
average

56 57.6

Table 2.10
Clinic 1

Pre-natal care
Yes No

Survives Yes 8 80
         No 2 10
Survival rate 80% 88%

Table 2.9
Overall

Pre-natal care

Yes No

Survives Yes 93 90
         No 7 10
Survival rate 93% 90%
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2.6.1 � What Type of Average?

When we used the average for the exam marks data above we were actu-
ally using one particular (most commonly used) measure of average: the 
mean. This is defined as the sum of all the data point values divided by 
the number of data points.

But it is not the only measure of average. Another important measure 
of average is the median. If you put all the data point values in order from 
lowest to highest then the median is the value directly in the middle, that 
is, it is the value for which half the data points lie below and half lie above.

Since critical decisions are often made based on knowledge only of 
the average of some key value, it is important to understand the extent to 
which the mean and median can differ for the same data. Take a look at 
Figure 2.21. This shows the percentage distribution of salaries (in $) for 
workers in one city.

Note that the vast majority of the population (83%) have salaries 
within a fairly narrow range ($10,000–$50,000). But 2% have salaries 
in excess of $1 million. The effect of this asymmetry in the distribution 
is that the median salary is $23,000, whereas the mean is $137,000. By 
definition half of the population earn at least the median salary; but just 
5% of the population earn at least the mean salary.

Of course, the explanation for this massive difference is the ‘long tail’ 
of the distribution. A small number of very high earners massively skew 
the mean figure. Nevertheless, for readers brought up on the notion that 
most data is inherently bell-shaped (i.e. a Normal distribution in the sense 
explained in Section 2.1) this difference between the mean and median 
will come as a surprise. In Normal distributions the mean and median are 
always equal, and in those cases you do not therefore need to worry about 
how you measure average.

The ramifications in decision making of failing to understand the dif-
ference between different measures of average can be devastating.

Example 2.2  Using the Mean When You Really Need the Median

Suppose you are the mayor of the city mentioned earlier. To address the 
problem of unequal wealth distribution you decide to introduce a modest 
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Figure 2.21  Percentage distribution of salaries for a large group of workers.

Table 2.11
Clinic 2

Pre-natal care
Yes No

Survives Yes 85 10
         No 5 0
Survival rate 94% 100%
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redistribution package. Every worker earning above ‘average’ salary will 
pay a tax of $100 while every worker earning below average will receive 
an extra $100. You feel that this will prove not only popular, but crucially 
will be tax neutral overall; it will not cost the city a penny. Unfortunately, 
by basing your calculations on the mean ($137,000) rather than the 
median ($23,000) just 5,000 workers pay the extra $100 in tax, while 
95,000 benefit from the extra $100. The move certainly proves popular 
but it bankrupts the city since you have to find $9 million of extra cash.

Example 2.3  Using the Median When You Really Need the Mean

Again suppose you are the mayor of the aforementioned city. This time 
you have to raise $100 million from taxpayers to fund a major new trans-
port project. It is agreed that all workers will contribute a fixed proportion 
of their salary to pay for the project. What should the fixed percentage 
be? Stung by your unfortunate experience at wealth redistribution, this 
time you base your calculation on an ‘average’ salary of $23,000. You 
work out that the necessary new ‘tax’ is a whopping 4.3% for each of 
the 100,000 workers; this is because you believe that an ‘average’ sal-
ary of $23,000 yields $1,000 and multiplying this by the total number of 
workers gets you to the magical $100 million. But this would only make 
sense if the mean salary was $23,000. In fact, because the mean salary is 
$137,000 the tax of 4.3% actually yields close to $600 million. The city 
makes an incredible profit, but unfortunately you are voted out of office 
because it is rightly perceived as an unnecessarily harsh tax. Basing your 
calculations on the mean salary of $137,000 requires a far more modest 
(and politically acceptable) 0.73% rate to make the target.

2.6.2 � When Averages Alone Will Never Be 
Sufficient for Decision Making

Whereas Simpson’s paradox and skewed distributions alert us to the 
need to be very careful in how we use averages, there are some funda-
mental reasons why, in many cases of critical decision making and risk 
analysis, averages should be avoided altogether.

If you were going on holiday to a particular location in July, then know-
ing that the average July temperature there (however you measure it) is 27°C 
does not provide you with sufficient information to know what clothes to 
pack; your decision would be very different if the temperature range was 
10°C to 40°C compared to a range of 22°C to 29°C. Similarly, if you were a 
poor swimmer, it is doubtful that you would be willing to wade across a river 
if you were told that the average depth was 5 feet, even if you were 6 feet tall.

Some decision makers avoid these problems by insisting that they 
have what is called a three-point estimate for each key value.

So, in the temperature example above the three-point estimate might 
be {10, 27, 40}.

Such three-point estimates are very widely used by decision makers 
in critical applications (the military is especially keen on the approach). 
Unfortunately, although the three-point estimate seems an attractively 
simple way to describe the range for a value, it will generally be insuf-
ficient for rational decision making.

To see why, consider again the salary distribution in Figure 2.21. What 
is the three-point estimate here? We have already seen that the ‘average 

A three-point estimate is simply 
three numbers:

{lowest possible value, average 
value, highest possible value}.
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value’ will be very different depending on whether we use the mean 
or median, and we clearly need at least both as the examples showed. 
But there are also serious problems with the lowest and highest possi-
ble values. In this case the lowest possible value is something very close 
to zero since there will be at least a small number of workers earning 
almost nothing. At the other end there is almost certainly at least one 
person earning over $20 million, so this will be the highest possible value. 
Neither the three-point estimate {0, 23,000, 20,000,000} nor {0, 137,000, 
20,000,000} is sufficiently informative even to help us solve the problems 
in Examples 2.2 and 2.3. When confronted with this issue, proponents 
of three-point estimates will often propose that the lowest and highest 
values are replaced with what are called percentiles, typically 10% and 
90% where the n% percentile is the value for which n% of the data items 
lie below. In the salary case this is more informative but still insufficient, 
whereas in the holiday example (where we were interested in temperature) 
it obscures the information we really need. To solve this we end up having 
to add additional percentiles, giving us not a three-point estimate but a 
five-, seven, or nine-point estimate. But no matter what we chose we can 
always find examples where the number of points may be insufficient.

Fortunately, there is a simple way out. We can just use the full distribu-
tion such as that shown in Figure 2.21. When decision makers use either an 
average or a 3-point estimate what they are trying to do is characterize the 
whole distribution in as simple way as possible. But truly rational decision 
making often requires us to consider the full distribution, rather than a 
crude simplification of it. It turns out that such a distribution is precisely 
what probability theory and Bayesian networks provide us with for all 
values of interest. And in some cases there may even be a very small num-
ber of values (called parameters) that enable you to determine the whole 
distribution (this is something we will explain properly in Chapter 5).

2.7 � When Simpson’s Paradox 
Becomes More Worrisome

Consider the following more troubling example of Simpson’s paradox 
(based on one from Pearl, 2000):

A new drug is being tested on a group of 800 people (400 men and 400 
women) with a particular disease. We wish to examine the effect that tak-
ing the drug has on recovery from the disease. As is standard with any 
randomised controlled trial, such as this clinical trial, half of the people 
(randomly selected) are given the drug and the other half are given a pla-
cebo. The results in Table 2.12 show that, of the 400 given the drug, 200 
(i.e. 50%) recover from the disease; this compares favourably with just 
160 out of the 400 (i.e. 40%) given the placebo who recover.

Therefore, clearly we can conclude that the drug has a positive effect. Or 
can we? A more detailed look at the data results in exactly the opposite 
conclusion. Specifically, Table 2.13 shows the results when broken down 
into male and female subjects.

The Normal distribution is an 
example where just two param-
eter values—the mean and the 
variance—determine the whole 
distribution.

Table 2.12
Drug Trial Results

Drug Taken No Yes

Recovered
No 240 200
Yes 160 200
Recovery rate 40% 50%

Table 2.13
Drug Trial Results with Sex of 
Patient Included

Sex
Drug Taken

Female Male

No Yes No Yes

Recovered
No 210 80 30 120
Yes 90 20 70 180
Recovery 
rate

30% 20% 70% 60%
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Focusing first on the men we find that 70% (70 out of 100) taking the 
placebo recover, but only 60% (180 out of 300) taking the drug recover. 
Therefore, for men, the recovery rate is better without the drug.

With the women we find that 30% (90 out of 300) taking the placebo 
recover, but only 20% (20 out of 100) taking the drug recover. Therefore, 
for women, the recovery rate is also better without the drug. In every 
subcategory the drug is worse than the placebo.

The process of drilling down into the data this way (in this case 
by looking at men and women separately) is called stratification. 
Simpson’s paradox is simply the observation that, on the same data, 
stratified versions of the data can produce the opposite result to non-
stratified versions. Often, there is a causal explanation. In this case 
men are much more likely to recover naturally from this disease than 
women. Although an equal number of subjects overall were given the 
drug as were given the placebo, and although there were an equal num-
ber of men and women overall in the trial, the drug was not equally dis-
tributed between men and women. More men than women were given 
the drug. Because of the men’s higher natural recovery rate, overall 
more people in the trial recovered when given the drug than when given 
the placebo.

Unfortunately, as explained in Box 2.4 things can get even worse.
The difference between the types of data analysis is captured graphi-

cally in Figure 2.22. In the initial model we only have information about 
whether the drug is taken to help us determine whether a subject recov-
ers. The revised causal model tells us that we need information about 
the subject’s sex in addition to whether they take the drug to help us bet-
ter determine whether the subject recovers. The final model introduces 
the further dependence, which is relevant for this particular case study 
namely that sex influences drug taken because men are much more 
likely in this study to have been given the drug than women.

2.8 � How We Measure Risk Can Dramatically 
Change Our Perception of Risk

The way we measure risk can dramatically change our perception of 
risk. A good example surrounds the claim that flying is the safest form 
of transport. What is the basis for this claim? It is based on measuring 

What we have in Figure  2.22 are 
three more examples of Bayesian 
networks. In this case we know not 
just the graphical structure of the 
network, but also the underlying 
‘statistical’ content. For the initial 
model Table 2.12 provides us with 
the necessary information about 
the outcome of ‘recovery’ (yes or 
no) given the information about 
‘drug taken’ (yes or no).

For the revised causal model 
Table  2.13 provides us with the 
necessary information about the 
outcome of ‘recovery’ (yes or no) 
given the different combinations 
of information about sex (‘male’ 
or ‘female’) and ‘drug taken’ (yes 
or no). It also provides us with the 
necessary information about the 
outcome of drug taken given sex.
You need to get used to these kinds 
of tables because they, together 
with the graphical model, are 
exactly what you have to specify to 
complete a Bayesian network. You 
will learn how to do that, but we 
leave that until Chapter 7 when we 
will return to these same models 
and show how they easily explain 
and overcome Simpson’s paradox.

There have been many well-known 
cases where Simpson’s paradox 
has clouded rational judgement 
and decision making. Many of 
these cases are in medicine, but the 
most famous occurred at Berkeley 
University, which was (wrongly) 
accused of sex discrimination on 
the grounds that its admissions 
process was biased against women. 
Overall the data revealed a higher 
rate of admissions for men, but 
no such bias was evident for any 
individual department. The overall 
bias was explained by the fact that 
more women than men applied to 
the more popular departments (i.e. 
those with a high rejection rate).

Drug takenSex

Recovery

Drug takenSex

Recovery

Drug taken

Recovery

(a) (b) (c)

Figure 2.22  Explaining Simpson’s paradox using a causal model. (a) Initial 
model; (b) Revised causal model; (c) Causal model with additional information.
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Box 2.4  Can we avoid Simpson’s paradox?
The answer to this question is yes, but only if we are certain that we know every possible variable that can 
impact the outcome variable. If we are not certain – and in general we simply cannot be – then Simpson’s para-
dox is theoretically unavoidable.

First, let us see how we can avoid the paradox in previous drug example of Section 2.8. Another way of 
looking at the paradox in that example is that, although the number of men and women in the study is the same, 
the drug is not equally distributed between men and women. The variable ‘sex’ confounds the recovery rate. 
Confounding is the bias that arises when the treatment (drug) and the outcome (recovery) share a common 
cause – as illustrated in Figure 2.22(c); confounding is often viewed as the main shortcoming of such studies. 
To avoid it, we need an equal number of subjects for each state of the confounding variable (in this case there 
are two ‘states’ of ‘sex’ namely male and female) for each state of the other dependent variable (‘drug taken’).

So, in the example studied it is not sufficient to simply divide the subjects into two equal size ‘control groups’ 
(400 taking the drug and 400 taking the placebo) even if the total number of males and females are equal. We 
actually need four equal size control groups corresponding to each state combination of the variables, that is:

◾◾ 200 subjects who fit the classification (‘drug’, ‘male’)
◾◾ 200 subjects who fit the classification (‘drug’, ‘female’)
◾◾ 200 subjects who fit the classification (‘placebo’, ‘male’)
◾◾ 200 subjects who fit the classification (‘placebo’, ‘female’)

Therefore, let us suppose that in a new study for some different drug we ensure that our 800 subjects are 
assigned into equal size control groups and that the results are as shown in Table 2.14.

Note the following:

◾◾ All four control groups have 200 subjects.
◾◾ The overall recovery rate is 63% with the drug compared with 52% with the placebo
◾◾ The recovery rate among men is 72% with the drug compared with 58% with the placebo
◾◾ The recovery rate among women is 54% with the drug compared with 46% with the placebo

Therefore, in contrast to the previous example, the drug is more effective overall and more effective in every 
sub-category. So surely we can recommend the drug and cannot possibly fall foul of Simpson’s Paradox in this 
case?

Unfortunately, it turns out that we really can fall foul of the paradox – as soon as we realise there may be 
another confounding variable that is not explicit in the data. Consider the variable age, and for simplicity let 
us classify people with respect to this variable into just two categories “<40” and “40+”. Even if we are lucky 
enough to have exactly 400 of the subjects ‘in each category’ we may have a problem. Look at the results in 
Table 2.15 when we further stratify the data of Table 2.14 by age.

Since it is the same data obviously none of the previous results are changed, that is a higher proportion of 
people overall recover with the drug than the placebo, a higher proportion of men overall recover with the drug 

Table 2.14
New Drug Trial Results with Sex of Patient Included

Sex Female Male

Drug taken No Yes Drug taken No Yes No Yes

Recovered Recovered
No 192 148 No 108 92 84 56
Yes 208 252 Yes 92 108 116 144
Recovery rate 52% 63% Recovery rate 46% 54% 58% 72%
Overall result: Favours drug In each subcategory: Favours drug
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deaths per distance travelled for the different modes of transport as 
shown in Figure 2.23.

While this is very comforting for those about to fly away on their 
holidays, things are not so simple. In terms of distance travelled, a single 
plane journey from London to the popular holiday location Majorca is 
the same as about 110 car journeys from West to East London. However, 
each such car journey, like the flight to Majorca, takes about 90 minutes. 
When we think of safety and risk what we are really interested in is 
surviving a journey and for this it is not fair to equate a single plane trip 
with 110 car trips. So let’s look at safety by deaths per billion journeys 
rather than distance travelled. The results are shown in Figure 2.24.

than the placebo, and a higher proportion of women overall recover with the drug than the placebo A. However, 
we can now see:

◾◾ The proportion of young men who recover with the drug is 80% compared with 90% with the placebo
◾◾ The proportion of old men who recover with the drug is 40% compared with 50% with the placebo
◾◾ The proportion of young women who recover with the drug is 60% compared with 70% with the 

placebo
◾◾ The proportion of old women who recover with the drug is 30% compared with 40% with the placebo

Therefore, in every single subcategory the drug is actually less effective than the placebo. This is despite 
the fact that in every single super-category the exact opposite is true. How is this possible? Because, just as in 
the earlier example, the size of the control groups at the lowest level of stratification are not equal; more young 
people were given the drug than old people (320 against 80). And young people are generally more likely to 
recover naturally than old.

The only way to be sure of avoiding the paradox in this case would be to ensure we had eight equal size 
control groups:

◾◾ 100 subjects who fit the classification (‘drug’, ‘male’, ‘young’)
◾◾ 100 subjects who fit the classification (‘drug’, ‘female’, ‘young’)
◾◾ 100 subjects who fit the classification (‘placebo’, ‘male’, ‘young’)
◾◾ 100 subjects who fit the classification (‘placebo’, ‘female’, ‘young’)
◾◾ 100 subjects who fit the classification (‘drug’, ‘male’, ‘old’)
◾◾ 100 subjects who fit the classification (‘drug’, ‘female’, ‘old’)
◾◾ 100 subjects who fit the classification (‘placebo’, ‘male’, ‘old’)
◾◾ 100 subjects who fit the classification (‘placebo’, ‘female’, ‘old’)

Even then we cannot be sure to have not missed another confounding variable.

Table 2.15
New Drug Trial Results with Sex and Age of Patient Included

Age 40+ <40

Sex Female Male Female Male

Drug taken No Yes No Yes No Yes No Yes

Recovered
No 96 28 80 24 12 64 4 32
Yes 64 12 80 16 28 96 36 128
Recovery rate 40% 30% 50% 40% 70% 60% 90% 80%
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On this measure an airplane journey is three times as ‘risky’ as a car 
journey. But, even with this measure the aircraft is a very safe way of 
travelling compared with modes of transport not yet considered. Indeed, 
if we change the scale in Figure 2.23 we get the results in Figure 2.25.

The astronomically higher ‘risk’ of the space shuttle is based on the 
fact there were only 138 journeys resulting in 14 deaths.

It’s also the case that simple differences in the way we measure risk 
can completely change our understanding and attitudes. Figure 2.26 
shows a typical and widely reported recent news story on medical risk.

50 10 15 20 25 3530

Deaths per 10 billion km

Figure 2.23  Safest form of travel? Travel by airplane is ‘20 times safer’ than 
travel by car when safety is measured by deaths per distance travelled.

20 40 60 80 100 1200

Deaths per 1 billion journeys

Figure 2.24  ​Safest form of travel? Travel by car is ‘3 times safer’ than travel by airplane when safety is measured by 
deaths per number of journeys.

K31678_C002.indd   33 27-Jun-18   3:50:55 PM



34 Risk Assessment and Decision Analysis with Bayesian Networks

The story reported that drinking wine regularly (about two glasses at 
night) triples the risk of mouth cancer. It sounds like a devastating finding 
but in reality it is not, because what is being reported here is relative risk 
whereas what is of most interest is absolute risk. There are actually few 
deaths from mouth cancer. In fact, for every 200,000 deaths in the United 
Kingdom, about eight are from mouth cancer. Assuming the results of 
the study are reliable (i.e. the ‘tripling of risk’) then what it means is that 
about six out of every eight people who die of mouth cancer drank wine 
regularly and two did not. That is where the ‘tripling’ of risk comes from.

However this relative measure of ‘risk’ is simply the ratio of drink-
ers to non-drinkers among those who die of mouth cancer. What we are 
really interested in knowing is the actual chance of dying from mouth 
cancer if we drink wine regularly compared with the chance of dying if 
we do not. To calculate this absolute risk we need to know what the pro-
portion of regular wine drinkers is among those who did. Suppose the 
proportion is 15%. So for every 200,000 deaths about 30,000 are regular 
wine drinkers. That means about six out of 30,000 who are regular wine 
drinkers die of mouth cancer – i.e. 0.02%; this compares to two out of 
170,000 who are not regular drinkers but who also die of mouth cancer – 
i.e. 0.0012%. So the absolute risk of dying from mouth cancer increases 
from 0.0012% to 0.002% for those who drink wine regularly. That is an 
increase of just 0.0008%. Interesting, but hardly the story implied.

2.9 � Why Relying on Data Alone Is 
Insufficient for Risk Assessment

The last decade has seen an explosion of interest in ‘big data’ and sophis-
ticated algorithms for analysing such data. The popular belief is that, 

Deaths per 1 billion journeys

1000 1500 2000 2500 3000 100,000,0005000

Figure 2.25  Safest form of travel? Measured by deaths per 1 billion journeys, the airplane is safer than a bicycle or motor-
bike. By far the least safe form of travel is the space shuttle.

Drinking two
glasses of
wine a day
triples risk of
developing 
mouth cancer

Figure 2.26  ​Typical newspaper 
headline on medical risk. Beware of the 
difference between relative and absolute 
risk.
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with sufficiently ‘big’ data and increasingly powerful ‘machine learn-
ing’ algorithms it should be possible, by using purely automated methods 
applied to the data, to discover all of the properties and relationships of 
interest for both improved prediction and decision-making. For example, 
such methods have been applied to large databases of supermarket cus-
tomers to understand and predict the buying patterns of customers and 
to determine the optimal time to release new products. In areas such as 
healthcare the hope is that, given large patient databases, such methods 
can be used to understand both the causes of particular diseases and 
the optimum treatments. Unfortunately, in most areas of critical deci-
sion making there is limited relevant data (e.g. in medicine doctors do 
not always record what they do), while in other areas even very large 
databases will never provide the required answers. Nor does ‘big data’ 
necessarily mean good quality data.

For example, a popular and important area for such machine learning 
is the use of ‘credit scoring’ by banks to determine the risk associated 
with making loans to customers. The kind of database used by banks for 
this purpose is shown in Table 2.16, where each record (i.e. row) corre-
sponds to a customer who was previously granted a loan.

Since too many people ‘default’ on loans, the bank wants to use 
machine learning techniques on this database to help decide whether or 
not to offer credit to new applicants. In other words they expect to ‘learn’ 
when to refuse loans on the basis that the customer profile is too ‘risky’.

Table 2.16
Typical Bank Database of Customers Given Loans

Customer Age
Marital 
Status

Employment 
Status

Home 
Owner Salary Loan … Defaulted

1 37 M Employed Y 50,000 10,000 … N
2 45 M Self-employed Y 60,000 5000 … N
3 26 M Self-employed Y 30,000 20,000 … Y
4 29 S Employed N 50,000 15,000 … N
5 26 M Employed Y 90,000 20,000 … N
6 35 S Self-employed N 70,000 20,000 … Y
7 32 M Self-employed Y 40,000 5000 … N
8 37 M Employed Y 25,000 … Y
9 18 S Unemployed N 0 50,000 … N
10 40 M Employed Y 65,000 45,000 … N
11 21 S Employed N 20,000 10,000 … Y
12 30 S Employed N 40,000 5000 … N
13 22 M Self-employed N 30,000 10,000 … Y
14 35 M Unemployed Y 0 3000 … Y
15 19 S Unemployed N 0 100,000 … N
… … … … … … … … …
100001 34 M Employed Y 45,000 1000 … N
100002 28 S Self-employed N 25,000 2000 … N
100003 19 S Unemployed N 0 25,000 … N
… … … … … … … … …
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The fundamental problem with such an approach is that the database 
contains only records of those who were granted loans. Analysis of such a 
database can learn nothing about those customers who were refused credit 
precisely because the bank decided they were likely to default. Any causal 
knowledge about such (potential) customers is missing from the data.

Suppose, for example, that the bank normally refuses credit to peo-
ple under 20, unless their parents are existing high-income customers 
known to a bank manager. Such special cases (like customers 9, 15, 
100003 above) show up in the database and they never default. Any 
pure data-driven learning algorithm will ‘learn’ that unemployed people 
under 20 never default – the exact opposite of reality in almost all cases. 
Simplistic machine learning will therefore recommend giving credit to 
people known most likely to default.

2.10 � Uncertain Information and 
Incomplete Information: Do Not 
Assume They Are Different

Consider the following assertions:

	 1.	Oliver Cromwell spoke more than 3,000 words on 23 April 1654.
	 2.	O.J. Simpson murdered his wife.
	 3.	You (the reader) have an as-yet undiagnosed form of cancer.
	 4.	England will win the next World Cup.

The events in assertions 1 and 2 either happened or did not. Nobody 
currently knows whether the assertion in statement 1 happened. Only O.J. 
Simpson knows for certain whether assertion 2 happened. Assertion 3 
describes a fact that is either true or false. Assertion 4 is different because 
it describes the outcome of an event that has not yet happened.

While all four assertions are very different what that all have in com-
mon is that our knowledge about them is uncertain (unless we happen to 
be O.J. Simpson). In this book the way we reason about such uncertainty 
is the same whether the events have happened or not and whether they 
are unknown or not. Unfortunately, many influential people do not accept 
the validity of this approach. We have an obligation to demonstrate why 
those influential people are wrong. To do this we will consider the simple 
scenario in Box 2.5 that captures the key differences between uncertain 
information and incomplete information.

Box 2.5 � Uncertain versus Incomplete Information
Suppose you ask your friend Naomi to roll a die without letting you see the result, but before she rolls it you 
have to answer the following:

Question 1: Will the number rolled be a 3?

Having rolled the die Naomi must write down the result on a piece of paper (without showing you) and 
place it in an envelope.
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Most people would be happy to answer Question 1 with something 
like the following (which, as we will see in Chapter 3 is an example of a 
probabilistic statement): There is a one in six chance of it being 3. Yet, 
there are many people who are convinced that such a probabilistic state-
ment is meaningless for Question 2. Their reasoning is as follows:

	 1.	There is no uncertainty about the number because it is a ‘fact’—
it is even written down (and is known to Naomi).

	 2.	The number either is a 3 (in which case there is 100% chance it is 
a 3) or it is not a 3 (in which case there is 0% chance it is a 3).

So some people are happy to accept that there is genuine uncertainty 
about the number before the die is thrown (because its existence is ‘not 
a fact’), but not after it is thrown. This is despite the fact that our knowl-
edge of the number after it is thrown is as incomplete as it was before.

Nowhere is this type of distinction more ingrained than in the law: A 
defendant stands trial for a crime that, of course, has already been com-
mitted. Because the crime has already been committed the defendant 
either is or is not guilty of that crime.

In most cases the only person who knows for certain whether the 
defendant is guilty is the defendant. However, the defendant is not the 
one who has to determine guilt. Although the law implicitly endorses 
probabilistic reasoning when it talks about ‘balance of probabilities’ and 
‘beyond reasonable doubt’ it often abhors any explicit probabilistic rea-
soning about innocence and guilt in court based on the same irrational 
argument as above. As an eminent lawyer told us:

Look, the guy either did it or he didn’t do it. If he did then he is 100% 
guilty and if he didn’t then he is 0% guilty; so giving the chances of guilt 
as a probability somewhere in between makes no sense and has no place 
in the law.

What is curious about the rejection of the probabilistic answer to 
Question 2, is that we can prove that this rejection leads to irrational 
decision making as follows. This type of argument is commonly known 
as the Dutch Book:

Suppose that you ask 60 people to each bet $1 on the num-
ber written down by Naomi (and you can assume Naomi 
is not one of the 60 betting). You have to set the odds and 
must choose one of the following options:

◾◾ Option A—If they choose the correct number you 
pay them $4 plus their $1 stake. Otherwise you 
win their $1 stake.

The scenario in which people are 
convicted on the basis of crimes 
that they are predicted to commit 
remains the domain of pure sci-
ence fiction like the Hollywood 
movie Minority Report.

Now answer:
Question 2: Is the number written down a 3 (i.e. was the number rolled a 3)?
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◾◾ Option B—If they choose the correct number you 
pay them $5 plus their $1 stake. Otherwise you 
win their $1 stake.

◾◾ Option C—If they choose the correct number you 
pay them $6 plus their $1 stake. Otherwise you 
win their $1 stake.

The twist to the scenario is that your life depends on get-
ting as close as possible to breaking even. In that case, 
whatever your views about the uncertainty or otherwise of 
the number being 3, you will surely do the kind of calcula-
tions shown in the sidebar to choose Option B rather than 
Option A or Option C. But that means that you accept that 
the chances of the number being a 3 must be closer to 1 in 
6 than to either 1 in 5 or 1 in 7. And if you accept this then 
it is irrational to reject a probabilistic answer to Question 2. 
Moreover, by accepting the validity of the statement ‘There 
is a one in six chance of it being 3’ you have just almost cer-
tainly saved your life. Not accepting this statement means 
you will probably die (actually there is a 2 in 3 chance you 
will die because you should have no preference between any 
of the three options).

What really lies at the heart of people’s concerns about using proba-
bilities to describe incomplete information is that people with different 
levels of knowledge about the information will have different probabili-
ties. So, whereas we should accept as reasonable the probability of a one 
in six chance of Naomi’s number being a 3, Naomi really does have 
reason to reject it because she knows the chance is 100% (if it is a 3) and 
0% if it is not. If Naomi told her friend Hannah that the number written 
down is an odd number, then Hannah’s personal probability for the num-
ber being a 3 should be a one in three chance (because 3 of the possible 
numbers are odd).

By the same argument, for the defendant in court there is no uncer-
tainty about guilt. But that does not remove the obligation from the jury 
to make a probabilistic assessment of guilt based on the incomplete 
information made available to them.

What is clear from the preceding discussion is that:

◾◾ If our knowledge of an event that has already happened is 
incomplete then we need to reason about it in the same way as 
we reason about uncertain events yet to happen. The failure 
to recognize that uncertainty and incomplete knowledge have 
to be handled in the same way leads to irrational decision 
making in some of the most critical situations.

◾◾ Different people will generally have different information 
about the same event (and this applies both to past and future 
events). Because of this people will generally have their own 
personal probability assessment of the event. In economics this 
difference in knowledge is often called ‘information asymme-
try’: for example, when buying a used automobile you may not 

Calculating the Break-
Even Odds for Guessing 
the Correct Die Number 
Written Down
Out of 60 people we can expect 
about 10 to choose the number 1, 
10 to choose the number 2, 10 to 
choose the number 3, and so on. 
Of course, in practice these actual 
numbers will vary (as we saw in 
Section 2.2), but as this is the most 
likely outcome, it would be irratio-
nal to make any other assumption.

So, whatever number is writ-
ten down we can expect about 10 
people to win and 50 people to 
lose. Using Option A this results 
in us taking $50 from the losers 
and paying out $40 to the winners. 
So we expect to win $10 overall. 
Using Option C this results in us 
taking $50 from the losers and 
paying out $60 to the winners. So 
we expect to lose $10 overall. Only 
using Option B do we expect to 
break even (taking $50 from the 
losers and paying out $50 to the 
winners). Of course a bookie, if he 
wanted to stay in business, would 
offer Option A.
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know whether it is a ‘peach’ or a ‘lemon’, but the salesman sell-
ing the car has no such uncertainty and his probabilities will be 
very different from that of his customers.

This notion of ‘personal probabilities’ is central to the Bayesian rea-
soning in this book. It is a property of the mind and not of the object, 
hence the contrasting use of the labels ‘subjective’ and ‘objective’. We 
will explore it further when we define probability formally in Chapter 5. 
Unfortunately, as the next section demonstrates, it turns out that correct 
probabilistic reasoning can be very difficult and seem counter-intuitive.

2.11 � Do Not Trust Anybody (Even Experts) 
to Properly Reason about Probabilities

Try answering the puzzle in Box 2.6.

If you have not already seen the puzzle then you may be surprised to 
know that the ‘correct’ answer here is e (in fact, the chances are slightly 
better than 1 in 2). You don’t need to know why at this point; a proper 
explanation will be provided in Chapter 5.

But if you answered a—on the instinctive basis that it is the closest 
to 23/365—then although you are completely wrong you are at least in 
good company. It is easily the most common answer. People are simi-
larly stumped by the classic Monty Hall problem described in Box 2.7.

Box 2.6 � Birthdays Puzzle
In a class of 23 children the chances that at least two children share the 
same birthday is:

	 a.	 Approximately 1 in 16
	 b.	 Approximately 1 in 10
	 c.	 Approximately 1 in 5
	 d.	 Approximately 1 in 3
	 e.	 Approximately 1 in 2

Box 2.7 � The Monty Hall Problem
Let’s Make a Deal, a classic American ’60s game show, hosted by Monty Hall, involved contestants choosing 
one of three doors. Behind one of the doors was a valuable prize such 
as a new car. Behind the other two doors was something relatively 
worthless like a banana.

After the contestant chooses one of the three doors Monty Hall 
(who knows which door has the prize behind it) always reveals a door 
(other than the one chosen) that has a worthless item behind it. He now 
poses the question to the contestant:

“Do you want to switch doors or stick to your original choice?”
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Not knowing the probability that children share the same birthday (or 
even the probability of winning the Monty Hall game) is hardly going to 
affect your life. But these problems are strikingly similar to many prob-
lems that can and do affect lives. In fact, even highly intelligent people, 
like world-leading barristers, scientists, surgeons, and businessmen mis-
understand probability and risk, as the following examples indicate.

Example 2.4  The Harvard Medical School Question

In a classic and much referenced study by Casscells and colleagues the 
following question was put to students and staff at Harvard Medical 
School:

One in a thousand people has a prevalence for a particular heart disease. 
There is a test to detect this disease. The test is 100% accurate for people 
who have the disease and is 95% accurate for those who don’t (this means 
that 5% of people who do not have the disease will be wrongly diagnosed 
as having it). If a randomly selected person tests positive what is the prob-
ability that the person actually has the disease?

Almost half gave the response 95%. The ‘average’ answer was 56%. In 
fact, as we will explain formally, in Chapter 6, the correct answer is just 
below 2%. Figure 2.27 provides an informal visual explanation.

Denotes person with disease Denotes person wrongly diagnosed with disease

Figure 1.27  In 1,000 random people about 1 has the disease but about 50 more are wrongly diagnosed as having the 
disease. So about 1 in 51 people who test positive for the disease actually have the disease, i.e. less than 2%.

Most people assume that there is no benefit in switching; they feel that by sticking to their original choice 
they have a 50% chance of winning, the same as if they switch.

In fact they are wrong. It turns out that, by switching, you have a 2 in 3 chance of winning. We will give 
a simple explanation why once we have formally defined probability in Chapter 5, and will also describe a 
Bayesian network solution in Chapter 7.
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Think, for a moment, of the implications of this. If you test positive 
it is still extremely unlikely that you have the disease. But there are doc-
tors who would believe you almost certainly have the disease and would 
proceed accordingly. This could result not just in unnecessary stress to 
you but even unnecessary surgery.

Example 2.5  The Prosecutor’s Fallacy

Suppose a crime has been committed and that the criminal has left some 
physical evidence, such as some of his blood at the scene. Suppose the 
blood type is such that only 1 in every 1,000 people has the matching 
type. A suspect, let’s call him Fred, who matches the blood type is put on 
trial. In court the prosecutor argues as follows:

The chances that an innocent person has the matching blood type is 1 in a 
1,000. Fred has the matching blood type. Therefore the chances that Fred 
is innocent is just 1 in a 1,000.

When an eminent prosecutor makes a statement like this, backed by 
forensic evidence, it is clear that its influence on the jury could be pro-
found. Yet, as we will explain in Chapter 4, the prosecutor’s conclusion 
generally massively understates the true probability that Fred is innocent. 
Figure 1.28 provides an informal visual explanation of this in the case 
where the number of potential suspects is 10,000 (in this case the chances 
that Fred is innocent is about 91%). And, as we will show in Chapters 6 
and 15, mistakes exactly like this continue to be made by lawyers and 
forensic scientists in courtrooms throughout the world. The result is that 
the value of evidence is misunderstood, and juries are influenced to make 
poor decisions.

You would expect that where critical decisions need to be made, the 
probabilities are calculated correctly. Unfortunately, they are usually 

Imagine 10,000
people who could
potentially have
committed the crime

One of whom
is the actual
source

But about 10
out of the other
9,999 people
have the matching
blood type

Actual source

Not source but
matching type
Not matching
person

Figure 2.28  The potential source population.
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not. In medical and legal situations lives are affected as a result. In 
business, companies can go bust and in many everyday financial cases 
the public’s general inability to understand probabilities is cunningly 
used against them.

And it is not just about relying on other people’s ability to calculate 
probabilities properly. Every day you make decisions that, consciously 
or not, depend on probability assessments. Whether it is deciding which 
way to travel to work, deciding if it is worth taking out a particular 
insurance, deciding if you should proceed with a major project, or just 
improving your chances of winning at cards or on a sporting bet, the 
ability to do accurate probability calculations is the only way to ensure 
that you make the optimal decisions. One of the main challenges of this 
book is to help improve the way you do it.

2.12 � Chapter Summary

The aim of this chapter was to introduce, by way of motivating exam-
ples, the key ideas of risk assessment and causal modelling that are the 
focus of the book. To appreciate why causal modelling (implemented by 
Bayesian networks) is such an effective method for risk assessment and 
decision analysis you first need to understand something about the tradi-
tional statistics and data analysis methods that have previously been 
used for this purpose. In introducing such methods, we have exposed a 
number of misconceptions and identified the most important limitations. 
In particular, we have demonstrated why these techniques provide little 
support for real practical risk assessment. To address these issues we 
now need to turn to causal models (Bayesian networks) and a different 
approach to probability than is typically used by statistical analysts.
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