Reviews


… although there have been several excellent books dedicated to Bayesian networks and related methods, these books tend to be aimed at readers who already have a high level of mathematical sophistication … . As such they are not accessible to readers who are not already proficient in those subjects. This book is an exciting development because it addresses this problem. … it should be understandable by any numerate reader interested in risk assessment and decision making. The book provides sufficient motivation and examples (as well as the mathematics and probability where needed from scratch) to enable readers to understand the core principles and power of Bayesian networks. However, the focus is on ensuring that readers can build practical Bayesian network models … readers are provided with a tool that performs the propagation, so they will be able to build their own models to solve real-world risk assessment problems.
—From the Foreword by Judea Pearl, UCLA Computer Science Department and 2011 Turing Award winner

This book gives a thorough account of Bayesian networks, one of the most widely used frameworks for reasoning with uncertainty, and their application in domains as diverse as system reliability modelling and legal reasoning. The book's central premise is that ‘essentially, all models are wrong, but some are useful’ (G.E.P. Box), and the book distinguishes itself by focusing on the art of building useful models for risk assessment and decision analysis rather than on delving into mathematical detail of the models that are built. The authors are renowned for their ability to put Bayesian network technology into practical use, and it is therefore no surprise that the book is filled to the brim with motivating and relevant examples. With the accompanying evaluation copy of the excellent AgenaRisk software, readers can easily play around with the examples and gain valuable insights of how the models behave ‘at work.’ I believe this book should be of interest to practitioners working with risk assessment and decision making and also as a valuable textbook in undergraduate courses on probability and risk.
Helge Langseth, Norwegian University of Science and Technology

Bayesian networks are revolutionizing the way experts assess and manage uncertainty. This is the first book to explain this powerful new tool to a non-specialist audience. It takes us on a compelling journey from the basics of probability to sophisticated networks of system design, finance and crime. This trip is greatly supported by free software, allowing readers to explore and develop Bayesian networks for themselves. The style is accessible and entertaining, without sacrificing conceptual or mathematical rigor. This book is a must-read for anyone wanting to learn about Bayesian networks; it provides the know-how and software so that we can all share this adventure into risk and uncertainty.
David Lagnado, Senior Lecturer in Cognitive and Decision Sciences, University College London

This is the book I have wanted to see for many years. Whilst we are entitled to see appropriate duty of care in any risk management scenario, ill-informed practice is in fact prevalent in industry and society. There is little real excuse for this as classical decision theory has a long established history, and it can now be operationalized in complex scenarios using the Bayesian network technology that is a core theme of this book. The problem has been that most books on Bayesian networks and decision theory focus in depth on the technical foundations, and provide little in the way of practical guidance on how to use the technology to support real-world risk assessment and decision making.
In contrast, Norman Fenton and Martin Neil have provided a clearly written and highly readable book that is packed with informative and insightful examples. I had fun reading it, but there is also sufficient technical detail so that one can obtain a deep understanding of the subject from studying the book. It is a joy, and one that I keep dipping back into.
Paul Krause, Professor of Software Engineering, University of Surrey